

Reg. No.:

Name :

Third Semester B.Tech. Degree Examination, November 2014 (2013 Scheme) 13.303 : DISCRETE STRUCTURES (FR)

Time: 3 Hours

Max. Marks: 100

PART - A

Answer all questions. Each question carries 2 marks.

- TRIVANDRUM-11
- 1. Show that $\neg (P \land Q) \rightarrow (\neg P \lor (\neg P \lor Q)) \Leftrightarrow (\neg P \lor Q)$.
- 2. What is indirect method of Proof ? Using the same show that $\neg (P \land Q)$ follows from $\neg P \land \neg Q$.
- 3. Differentiate between a statement and a statement function.
- 4. If a Relation 'R' is transitive, then prove that its inverse R⁻¹ is also transitive.
- 5. Let $P = \{2, 3, 6, 12, 24, 36\}$. The relation " \leq " be such that $x \leq y$; if x divides y. Draw the Hasse diagram of (P, \leq) .
- 6. Define the symmetric difference between two sets.
- 7. Prove that the inverse of an element in a group is unique.
- 8. What is meant by Ring with zero divisors? Explain.
- 9. Differentiate between simple and elementary path in a graph.
- Prove that, in a distributive lattice, if an element has complement then this complement is unique. (10×2=20 Marks)

PART-B

Answer any one question from each Module.

Third Semester B.Tech. Ddg-sluboMamination, November 2014

11. a) Without constructing the truthtable, prove that

$$(P \land (Q \land R)) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R.$$

b) Using indirect method, prove that

$$S \to \neg Q, S \vee R, \neg R, \neg R \overset{\longrightarrow}{\leftarrow} Q \Rightarrow \neg P$$

c) Check the validity of the following statements 29up nas 3 and 2

"All integers are rational numbers Some integers are powers of 2.

Therefore, some rational numbers are powers of 2".

12. a) Show that

$$((P \lor Q) \land \neg (\neg P \land (\neg Q \lor \neg R))) \lor (\neg P \land \neg Q) \lor (\neg P \land \neg R)$$
 is a tautology.

10

b) Show that from

i)
$$(\exists x)[F(x) \land S(x)] \rightarrow \forall y[M(y) \rightarrow W(y)]$$

- (2, 3 to 12, 24, 36) The relation ii) $(\exists y)[M(y) \land \exists W(y)]$, the conclusion

$$(\forall x)(F(x) \rightarrow \exists S(x)]$$
 follows.

10

stine the symmetric difference being sluboM

13. a) Construct a formula for the sum of first 'n' positive odd numbers. Prove the same using mathematical induction.

5

b) Let R and S be two relations on a set of positive integers I.

$$R = \{ \langle x, 2x \rangle / x \in I \} S = \{ \langle x, 7x \rangle / x \in I \}. \text{ Find } R \circ S, R \circ R, R \circ R \circ R, R \circ S \circ R.$$

c) For any two sets A and B, show that $A - (A \cap B) = A - B$.

14. a) Prove that if $n \ge 1$, then 1 (1!) + 2(2!) + ...+n (n!) = (n +1)! - 1.

5

b) Show that countable union of countable sets is countable.

5

c) Let 'N' be the set of natural numbers. 'R' is a relation defined on the set N × N of ordered pairs defined by (a, b) R (c, d) if ad = bc. Prove that 'R' is an equivalence relation.

10

Module - III

15. a) Show that the set 'N' of natural numbers for the composition $a \circ b = a + b + ab$ is a semigroup. Is it a Monoid?

8

b) Prove that every subgroup of an abelian group is a normal subgroup.

5

c) Show that if $a, b \in G$, then $(ab)^2 = a^2b^2$ if 'G' is abelian.

7

16. a) State and prove Lagrange's theorem.

10

b) Discuss different algebraic systems with two binary operations with examples.

10

Module - IV

17. a) Show that every chain is a distributive lattice.

8

b) Differentiate between a Boolean function and Boolean expression.

2

c) Explain connected, disconnected and strongly connected graphs using examples.

10

18. a) Find all sunlattices of the given lattice.

10

b) Let x, y be arbitrary elements in a Boolean algebra (B, +, ., 1, 0, 1). Prove the Demorgan's laws.

$$(x+y)' = x'y'$$
 and $(xy)' = x' + y'$

10